Emma Versteegh

Home » Uncategorized » Carbon isotope fractionation between ACC and calcite

Carbon isotope fractionation between ACC and calcite


A new paper in Applied GeochemistryCarbon isotope fractionation between amorphous calcium carbonate and calcite in earthworm-produced calcium carbonate

  • Earthworms produce granules of calcium carbonate that form from an amorphous calcium carbonate suspension.
  • The microspherulites of amorphous calcium carbonate coalesce and recrystallize.
  • Fractionation of C isotopes occurs as the ACC recrystallizes with εcalcite-ACC = −1.20 ± 0.52%.
  • This is consistent with a dissolution-reprecipitation pathway rather than solid state rearrangement.
  • This may be important for the interpretation of CaCO3-based C isotope environmental proxies.

In this study we investigate carbon isotope fractionation during the crystallization of biogenic calcium carbonate. Several species of earthworm including Lumbricus terrestrissecrete CaCO3. Initially a milky fluid comprising micro-spherules of amorphous CaCO3(ACC) is secreted into pouches of the earthworm calciferous gland. The micro-spherules coalesce and crystalize to form millimetre scale granules, largely comprising calcite. These are secreted into the earthworm intestine and from there into the soil. L. terrestriswere cultured for 28 days in two different soils, moistened with three different mineral waters at 10, 16 and 20 °C. The milky fluid in the calciferous glands, granules in the pouches of the calciferous glands and granules excreted into the soil were collected and analysed by FTIR spectroscopy to determine the form of CaCO3 present and by IRMS to determine δ13C values. The milky fluid was ACC. Granules removed from the pouches and soil were largely calcite; the granules removed from the pouches contained more residual ACC than those recovered from the soil. The δ13C values of milky fluid and pouch granules became significantly more negative with increasing temperature (p ≤ 0.001). For samples from each temperature treatment, δ13C values became significantly (p ≤ 0.001) more negative from the milky fluid to the pouch granules to the soil granules (−13.77, −14.69 and −15.00 respectively at 10 °C; −14.37, −15.07 and −15.18 respectively at 16 °C and −14.89, −15.41 and −15.65 respectively at 20 °C). Fractionation of C isotopes occurred as the ACC recrystallized to form calcite with the fractionation factor εcalcite-ACC = −1.20 ± 0.52‰. This is consistent with the crystallization involving dissolution and reprecipitation rather than a solid state rearrangement. Although C isotopic fractionation has previously been described between different species of dissolved inorganic carbon and various CaCO3 polymorphs, this is the first documented evidence for C isotope fractionation between ACC and the calcite it recrystallizes to. This phenomenon may prove important for the interpretation of CaCO3-based C isotope environmental proxies.


Typical FTIR spectra for milky fluid, a granule recovered from one of the pouches (pouch granule), and a granule recovered from the soil (soil granule); all spectra relate to samples from the same earthworm. Reference spectra for synthetic calcite and ACC are also shown. Spectra are vertically offset on the absorbance axis for clarity. The major calcium carbonate peaks (υ1 to υ4) are labelled. Calcite shows peaks at ∼714 cm−1 (υ4), ∼866 cm−1 (υ2), ∼1090 cm−1 (υ1) and 1420–1470 cm−1 (υ3); amorphous calcium carbonate lacks the ∼714 cm−1 peak.


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s

%d bloggers like this: